Regularity of the optimal sets for the second Dirichlet eigenvalue

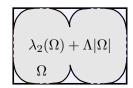
by Dario Mazzoleni, Baptiste Trey, and Bozhidar Velichkov (the preprint is available on ArXiv and at http://cvgmt.sns.it/paper/4839/)

Summary

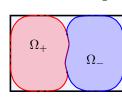
Setting. Given a bounded open set $\Omega \subset \mathbb{R}^d$, we consider the functional

$$\Omega \mapsto \lambda_2(\Omega) + \Lambda \operatorname{Vol}(\Omega) \tag{TP}$$

where $\Lambda > 0$ is a constant, $Vol(\Omega)$ is the Lebesgue measure of Ω , and $\lambda_2(\Omega)$ is the second eigenvalue of the Dirichlet Laplacian on Ω .



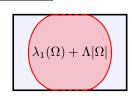
Main result. We fix a $C^{1,\alpha}$ -regular bounded open set $D \subset \mathbb{R}^d$ and we prove a regularity result for the sets Ω that minimize $\lambda_2 + \Lambda \text{Vol}$ among all open subset of D. Precisely, we prove that if Ω is a minimizer of $\lambda_2 + \Lambda \text{Vol}$, then it contains two disjoint open sets Ω_+ and Ω_- such that:

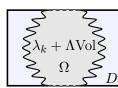


- $\Omega_+ \cup \Omega_-$ is a minimizer of $\lambda_2 + \Lambda \text{Vol}$;
- the boundaries ∂Ω₊ and ∂Ω_− are C^{1,α} regular in a neighborhood of ∂Ω₊ ∩ ∂Ω_−;
 the free boundaries ∂Ω_± are C^{1,α} regular in a neighborhood of ∂Ω_± ∩ ∂D;
- the one-phase free boundaries $\partial \Omega_+ \setminus (\partial D \cup \partial \Omega_-)$ and $\partial \Omega_- \setminus (\partial D \cup \partial \Omega_+)$ are $C^{1,\alpha}$ regular up to a closed (d-5)-dimensional set.

In particular, in dimension $d \leq 4$, the sets Ω_+ and Ω_- are $C^{1,\alpha}$ regular.

History. Shape optimization problems for functionals involving the Lebesgue measure and the eigenvalues of the Dirichlet Laplacian were studied for more than a century. The first regularity result for such functionals was proved in 2009 by Briançon and Lamboley [BL] for $\lambda_1 + \Lambda \text{Vol}$. The analysis was based on the technique of Alt and Caffarelli and was recently improved in [RTV].





For functionals involving higher eigenvalues, as for instance $\lambda_k + \Lambda \text{Vol}$, the existence of an optimal set (in the large class of quasi-open sets) was proved by Buttazzo and Dal Maso [BDM]. Little is known about the regularity and the structure of the optimal sets. The first result in this direction was proved in [MTV] (and improved in [KL1]) for the functional $\lambda_1 + \lambda_2 + \cdots + \lambda_k + \Lambda \text{Vol.}$

When the functional does not involve the first eigenvalue λ_1 , the regularity of the optimal sets is more involved. Indeed, the only regularity result for the free boundaries of the minimizers of $\lambda_k + \Lambda \text{Vol}$ (for general $k \geq 2$) was proved by Kriventsov and Lin in [KL2], where they show that the flat free boundaries are smooth. In the case k=2, this corresponds to the regularity of $\partial \Omega_{\pm} \setminus (\partial D \cup \partial \Omega_{\mp})$.

> In particular, our result is the first that gives a complete account on the regularity of the optimal sets for functionals of the form $\lambda_k + \Lambda \text{Vol}$, for $k \geq 2$.

Strategy of the proof. We first show that we can rewrite the shape optimization problem for $\lambda_2 + \Lambda \text{Vol}$ as a two-phase free boundary problem for the (non-differentiable) functional

$$J(u) = \max \left\{ \int_{\{u > 0\}} |\nabla u|^2 \, dx \; ; \; \int_{\{u < 0\}} |\nabla u|^2 \, dx \right\} + \Lambda \text{Vol}(\{u \neq 0\}) \quad \text{where} \quad u \in H_0^1(D) \, .$$

Then, we use a three-phase monotonicity formula as in [BuV] and the result from [RTV] to describe the free boundary in a neighborhood of ∂D . The main part of the paper is dedicated to prove that the minimizer u of J are viscosity solutions of a two-phase free boundary problem; once we have this, the regularity of the two-phase free boundary $\partial \Omega_+ \cap \partial \Omega_-$ follows from [DSV].

Bibliography.

[BL] Briançon-Lamboley. Ann. IHP (2009).

[BuV] Bucur-Velichkov. SIAM. Cont. Optim. (2014).

[BDM] Buttazzo-Dal Maso. ARMA. (1993).

[DSV] De Philippis-Spolaor-Velichkov. ArXiv (2019).

[KL1] Kriventsov-Lin. CPAM (2018).

[KL2] Kriventsov-Lin. CPAM (2019).

[MTV] Mazzoleni-Terracini-Velichkov. GAFA (2017).

[RTV] Russ-Trey-Velichkov. Calc. Var. PDE (2019).